2017年度威廉希尔外请专家学术报告之十八
2017年度威廉希尔外请专家学术报告之十八
时间:2017-09-28 22:37:16 来源: 作者:
报告题目: Hamilton-Yau-Perelman Program Via The Ricci Flow
报告人: 张树城 教授(台湾大学)
报告时间: 2017年10月10日(周二)15:00—17:00
报告地点: 威廉希尔学术报告厅
报告摘要: A central problem of differential geometry is the geometrization problem on manifolds. In particular, it is to determine which smooth manifolds admit certain geometric structures. One of goals is to understand and classify the singularity models of the associated nonlinear geometric evolution equation, and to connect it to existence problem of geometric structures on manifolds. For instance, in 1964, Eells-Sampson introduced the harmonic map heat flow and used it to prove the existence of harmonic maps into targets with nonpositive sectional curvature. In 1982, R. Hamilton introduced the Ricci flow. And by studying the singularity models of Ricci flow, R. Hamilton and G. Perelman solved Thurston geometrization conjecture and Poincare conjecture for a closed 3-manifold in 2002. In this talk, I will make a heuristic remark on this Hamilton-Yau-Perelman Program Via The Ricci Flow.
报告人简介:张树城,博士,教授,博士生导师,杰出的几何分析学家。1985-1990在莱斯大学学习并获博士学位,2004-2007年间任台湾清华大学数学系系主任,2008年至今任教于国立台湾大学。主要研究领域为:微分几何、几何分析、伪Hermitian几何、Kaehler几何等。近年来专注于CR流形中的几何分析问题,包括CR Obata问题、CR heat equation 相应的Li-Yau gradient estimate,linear trace Li-Yau-Hamilton inequality问题的研究。在国际著名学术期刊,如J. Differential Geometry、Math Ann.、J. Geometric Analysis、Trans. AMS 等发表系列重要研究成果。
欢迎广大师生参加!
威廉希尔
2017年9月28日